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This note continues work reported earlier on calculations of radiation
induced quenching problems around the energy doubler., A1l calculations were
performed with 1000 GeV incident protons.

(1) Beam Scraper at Medium Straight Section

Since the momentum dispersion is large at a medium straight section,
beam Tosses associated with RF acceleration failure can be localized there
using a beam scraper. Figure 1 shows a beam scraper with an aperture of
4.5 cm(H) by 2 cm{V) and a length of 2m, placed 12m upstream of the
Doubler dipole magnets. The beam collimator immediately upstream of the
Doubler magnets must have slightly larger effective apertures than the
scraper so as not to intercept the primary proton beam. The apertures
of the collimator and vacuum chamber plug are chosen to be 5 cm(H) by
3 cm(V) in the present study. (Calculations were made with and without
the collimator for comparison.) If horizontal beam dimensions at the
scraper and absorber positions are taken into account, the absorber
apertures can be narrowed because the proton beam has allarger horizontal
amplitude at the scraper. Some results have already been repor‘ted.I (See
Figures S23 and S25 in Supplement 2 of Ref. 1). For runs without the
vacuum chamber plug, the vacuum chamber radius was 3.68 to 3.81 cm. Figures
2 and 3 show some of the earlier results. Neither collimator nor vacuum chamber
plug were present for the case shown in Figure 2, while both were included
for the results given in Figure 3. Figures 4, 5 and 6 show energy density
distributions for the vacuum chamber radii extending from 3.18 to 3.31 cm,
from 3.18 to 3.44 cm, and from 3.18 to 3.57 cm. The beam strikes inside
(¢ = 0) and outside (¢ = w) edges of the scraper with an incident angle of
0 mrad.



-2-

Energy density distributions in the magnet coils depend strongly on
details of the shielding at the magnets. When the collimator upstream
of the magnets is not present in the calculation, a sharp peak appears at
the upstream end of the magnets. With the vacuum chamber plug absent the
second peak appears about 6m (9m) for ¢ = w(0) from the upstream end of the
magnet and is due to high energy photons from neutral pion decay. With the
plug present, the peak corresponding to neutral pion production disappears and
the energy density has a rather broad peak about 3m into the magnet. Table I
summarizes peak energy densities in the coil for a shallow radial range
(3.81 cm to 4.40 cm) for various configurations. It can be seen that the plug reduces
maximum energy density further to about 0.006 GeV/(cm3 - interacting proton). the
This means that about 101} interacting protons would cause a maximum energy
density at the magnet coils of 12 mj/g. Also given are peak energy densities
for an ar?angement proposed by T.Coﬂins2 in which the upstream dipoles are
rep]aéed by two 3-m long dipoles with a 4 inch rperturé and equipped with
absorbers. The maximum energy density for this case is very similar to that
with the plug.

If magnets with larger apertures are substituted for the two upstream
magnets (6m each), the maximum energy density can be reduced considerably.
Figure 7 shows the maximum energy density as a function of coil radius at
¢ = 0 and 7 with the vacuum chamber plug present. The maximum energy density
with 4 inch aperture magnet coils is about 0.0025 GeV/(cm3 - interacting proton).
Similarly, the maximum energy should be smaller for a vacuum chamber plug with
a smaller aperture.

In conclusion the maximum energy density at the Doubler magnet coils
downstream of the beam'scraper at the medium straight section can be reduced
to about 0.006 GeV/(cm3 - interacting proton) using a 5 cm{H) x 3 em(V) vacuum
chamber plug. If, in addition, magnets with a larger aperture are substituted
for the two regular magnets following the medium straight section then the
maximum energy density can be as Tow as ¢.002 GeV/(cm3‘- interacting proton) or
less.

(2) Electrostatic Septum Wires

Some calculations about radiation problems due to scattering off the
electrostatic septum wires have already been reported.l A beam dump consisting
of four conventional magnets is introduced to take the brunt of the energy
deposited by the scattered particles. Figure 8 shows the arrangement of the
earlier study. The horizontal bump results were calculated both for inward
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and outward beam deflection. It was concluded that (a) a vertical bump
is likely more efficient than a horizontal bump since vertical apertures
can be made much smaller (b) the septum is preferably placed downstream
of the first bump magnet to achieve a larger spread in the angles and
positions of (positive) off-momentum particles at the front of the
doubler string.

We report here results for a more realistic geometry including
superconducting quadrupole magnets as shown in Figure 9. Energy density
distributions in both quadrupole and dipole strings were calculated for
two sets of collimator and plug aperatures given in Table II. Figures 10
and 11 show energy density distributions for the narrow aperture configurations
and Figures 12 and 13 for the wide aperture configuration. Although the narrow
aperture configuration gives better radiation shielding, the wide aperture
configuration seems to be more practical from the standpoints of construction
and alignment. For the wide aperture configuration the maximum energy
density in the Doubler magnet coils is 5 x 10'5 GeV/(cm3 - incident proton on septum
wires). For an energy deposition 1imit of 1 mj/g, about 10]2 protons are
allowed to strike the septum wires. Therefore, the maximum number of protons

can be extracted is about 4 x 10]3

protons/pulse when the extraction efficiency
is 97.5%, i.e., 2.5% of protons strike septum wires. If necessary, the

energy deposition in the Doubler magnet coils can be further recuded by using
beam collimators with smaller apertures or by using a few large aperture

magnets downstream of the beam bump magnets.

(3) Lambertson Septum Magnets

Previous studies1 about radiation problems due to scattering from the
Lambertson septum magnets were also made for a simple geometry which omitted
all quadrupole magnets. Energy density distributions in downstream Doubler
magnets were found to depend strongly on beam conditions. When the proton
beam strikes the upstream surface of the septum perpendicularly, the energy
density in the downstream Doubler magnet coils is relatively small because
the Lambertson magnets have enough absorbing material at the septum region in
the forward direction. On the other hand, when the proton beam strikes the
side surface of the septum with a small incident angle (30 pad), the energy
density in the downstream magnet coils becomes substantial.

Figures 14 through 18 show results for a more realistic geometry
which includes superconducting quadrupole magnets. The protons were
assumed to strike the side surface of the septum from the direction of the
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field free region. They were distributed uniformly along the first 3.2m of
the septum with an angle of incidence of 30 yrad. Figure 19 shows one of
the earlier results for the simple geometry under the same beam condifions.
There was no collimator assumed present.

Figures 14 and 17 show energy density distributions in the quadrupole
string with and without an iron collimator, 5 cm(H) by 3 cm (V) and 2m in
length, respectively, upstream of the quadrupole string. The maximum energy
densities without collimator are similar to the upstream peaks seen in earlier
calculations, as shown in Figure 19. The peak values in the first quadrupole
were suppressed by an order of magnitude due to the collimator, but the peaks
in the second quadrupole were affected much less. An additional collimator
may be needed between the two quadrupcle magnets. Energy density distributions
in the dipole string are shown in Figures 15 and 16 for vacuum chamber radii
from 3.68 to 3.81 cm and from 3.18 to 3.31 cm, respectively. No collimator
was assumed to be present upstream of the quadrupole string. Distributions
with a collimator present are shown in Figure 18 for a vacuum chamber radius
from 3.68 to 3.81 cm. They are similar to the distributions around the
second maxima for the geometry without quadrupoles (Figure 19).

In summary those preliminary results indicate that the Lambertson
magnet areas for both normal extraction and beam abort may not require anything
more than simple beam collimators and vacuum chamber plugs for the downstream
Doubler magnets. Detailed studies which include angle and position
distributions at the Lambertson magnets for protons scattered from the
electrostatic septum wires are in progress.

(4) Mini-Straight Section

We previously discussed the case where the proton beam strikes the
upstream end of the Doubler dipole magnet]. We report here on a similar
problem when the proton beam strikes a quadrupole magnet at a mini-straight
section. Figure 20 shows a typical configuration. Figures 21 through 30 show
the energy density in quadrupole and dipole magnet coils as a function of
azimuthal angle and coil radius. For some cases an iron collimator with the
horizontal aperture of 6.2 cm is placed immediately upstream of the downstream
Doubler dipote. Other conditions are indicated in the legend of figures. The
vacuum chamber radius of the quadrupole magnet is from 3.68 to 3.81 cm. Table III
summarizes the maximum energy deposition in the correction coils and main coils
of the quadrupole magnet as well as in the two radial ranges of the dipole
magnet coils. The maximum energy deposition in both the sets of coils of the
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quadrupole magnet increases as the scraper length increases from 2 to 20 cm,
it decreases substantially for a scraper length of 100 cm. Therefore, the
collimator upstream of the dipole must be substantially long (> 30 cm) to be
effective for shielding. A thin collimator (< 10 cm) can increase the
maximum energy density in the downstream Doubler magnet. We also studied
the case in which the scraper was placed inside the vacuum chamber of the
quadrupole magnet. The energy deposition in the quadrupole magnet coils is
quite large.
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DISTANCE FROM UPSTREAM END OF MAGNET (M)
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